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ABSTRACT 

We study the behaviour of subharmonic functions on a graph. We assume 

bounds on the growth of balls and functions in order to obtain Liouville 

type theorems. 

0. In troduct ion  

The aim of this paper is to analyse the qualitative behaviour of subharmonic 

functions on graphs. To fix notations, G shall denote an infinite, connected 

graph, with uniformly bounded vertex degree. 

It turns out that, in a number of basic questions, the asymptotic growth of 

the cardinality of balls plays a preminent rSle among the most simple structural 

properties of G. Somehow, to parallel the continuous case, G compares with 

a complete manifold whose geometry is controlled in terms of volume, avoiding 

curvature assumptions. 

The basic question to which we presently address concerns uniqueness, up to 

constants, of solutions of the differential inequality 

(0.1) Au > 0 on G. 

Otherwise said, we look for a type of result reminiscent of the classical Liouville 

theorem. 

Motivated by the works of Karp, [K], and Dodziuk and Karp, [D-K], we begin 

with analysing the ~P behaviour of solutions of (0.1). We prove 
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THEOREM A: Let u be a non-negative subharmonic function on G. Then, either 

u is constant or, for any 2 <_ p < +oo, 

lim 1 E un(x)= +oo. 
R....+oo 

Bn(q) 

Here, Bn(q) is the ball of radius R centered at the vertex q. Note that  the 

choice of q plays no r51e. 

As a mat ter  of fact, the conclusion of Theorem A is bothered with the 

unpleasant restriction p > 2. Indeed, one would expect, as a natural range 

for p, the interval (1, +oc). It seems a challenging problem to determine whether 

this assumption is a technical weakness of the argument presented below, or it 

pertains to the nature of the discrete Laplacian. However, we obtain a partial, 

siguificative answer to this question in Theorem C of section 3. A meaningful 

consequence of this latter result is contained in 

COROLLARY D: Let 0 < 6 < 1 and assume that the graph G satisfies 

IBR(q)l 
(0.2) limn...+ooinf ~ = 0 

for some vertex q. Then any subharmonic function u such that 

u(x) <_ Apk(x, q) + B 

for some constants A, B > 0, 0 ~ k < 6, is constant. 

Here, I'I denotes cardinality and p the distance in the graph. 

The aim of section 4 is to show that (0.2) can be relaxed as to allow 6 = 0, in 

Corollary D, provided u is at most of logarithmic growth. Indeed, we prove 

THEOREM E: Suppose that, for some vertex q, 

IBR(q)[ 
(0.3) lim R2 = 0. 

R..-,+oo 

Let u be a subharmonic function such that 

(0.4) u(x) <_ Alogp(x,q)  + B 

for some constants A, B > O. Then u is constant. 

To the best of our knowledge even the continuous version of Theorem E is 

new. Its proof, on a complete Riemannian manifold, can be modeled after the 

arguments presented below. 
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In literature, LiouviUe type theorems can be divided into two major classes: 

those involving bounds on the functions, and those involving bounds on the 

energy. In particular, into the former class fall a number of results concerning 

recurrence (equivalently parabolicity) of graphs. We refer the reader to the survey 

article -and references therein- of Woess [W]. Liouville theorems of the second 

type have been proved, in the discrete case, by a number of authors. Notably we 

mention the papers of Soardi [S1], Cartwright and Woess [C-W] and Benjamini 

and Schramm [B-S]. Again we refer to Woess [W] and to the recent book of 

Soardi [$2]. 

ACKNOWLEDGEMENT: We would like to thank I. Holopainen for helpful 

discussions. 

The authors also wish to thank the referee for her/his very keen suggestions 

(in particular, they are indebted for the remark following Corollary B). 

1. Preliminaries and notat ions  

Let G be an infinite graph with set of vertices X, and set of edges E. Thus, 

IXI = cr and E is a symmetric, non-reflexive relation, E C X • X. Throughout 

the paper, the notation IBI stands for cardinality of the set B. For (x, y) E E 

we shall write x ~ y and say that x and y are ne ighbours .  We shall not be 

concerned with the orientation of edges. 

Given a vertex x we let 

(1.1) re(x)  = I{y e x :  y ~ x} l .  

We assume that  the graph has uniformly bounded vertex degree, that is, there 

exists M > 0 such that  

(1.2) m(x) < M for each x E X. 

A p a t h  a, joining vertices x and y, is a (finite) sequence x0 = x, x l , . . . ,  x~ = y 

of vertices such that xi ~ xi+l. Obviously, l(a) = n is the length of a. 

G is a c o n n e c t e d  graph if every pair of vertices can be joined by a path. In 

this case we introduce a d i s tance  p: X • X ~ N by setting p(x, x) = O, and for 

x ~ y ,  

(1.3) p(x, y) = inf l(a) 
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where the infimum is taken over all paths joining x and y. 

For q E X, R E 1% we denote 

(1.4) B n ( q ) = { x � 9  S R ( q ) = { x � 9  

A v e c t o r  field F is a map F: E ~ R with the property 

(1.5) F(x, y) = -F(y ,  x) for every x ,,~ y. 

Given vector fields F and G, their i nne r  p r o d u c t  is the function F.G: X ---* R 

defined by 

(1.6) (F.G)(z) = Z F(x, y)G(x, y). 
y ~ x  

Thus, ][FI], the n o r m  of F, is 

(1.7) [[FII (x) = (F.F)I/2(x) = [f(x,y)] 2 
ky-- ,x  

Let f :  X ~ ]R be a function and F a vector field. The scalar  p r o d u c t  ( f , F )  
is the vector field 

(1.8) ( f  * F)(x,  y) = ~[f(x)  + f(y)]F(x, y). 

The d i v e r g e n c e  and g r ad i en t  operators allow us to produce functions from 

vector fields and vice versa according to the following rules: 

1 
(1.9) (div F)(x) - re(x) ~-" F(z, y), 

y ~ z  

(1.10) (df)(z, y) = f(y) - f(x). 

A simple computation yields 

1 
(1.11) div(f ,F) ( z )  = f ( x ) d i v f ( x ) +  ~ ( d f . F ) ( x ) .  

Given a function f :  X ~ R define its Lap lac i an  by 

1 
f ( v )  - (1.12) Af (x )  - m(x) v ~~: 
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It is an easy matter to check that 

(1.13) Af(x)  = (div df)(x). 

We say that  the function f is h a r m o n i c  (resp. subha rmon ic )  if A f  = 0 (Af  _> 

0). 

Observe that, in case F = dg, for some g: X ~ R, (1.11) becomes 

1 
(1.14) div ( f  , d g ) ( x )  = f ( x ) A g ( x )  + 2--m-~(x) (df.dg)(x). 

It is immediate to verify the validity of the following discrete analogue of G r e e n ' s  

formula .  

PROPOSITION 1.1 

(1.15) 

([D-K]): I f  N is a finite subset of X and u, v: X -~ R, then 

1 
~ [u(y) - u(x)l[v(y) - v(x)] 

x,yEN 
x ~ y  

= - m(x)v(x) u(x) + Z 
xEN xEN'yEON 

y ~ x  

where ON = N \ N  and N = {y E X: 3x E N,x  ~ y}. 

In the sequel we shall often use the notion of cut-off function. For the sake of 

clarity we introduce the following 

Definition: Let R > r + 1 be integers, q E X. A cut -of f  function ~ associated 

to the region CR,~(q) ---- {x E X: r < p(x, q) < R} is a function ~: X --* [0, 1] 

satisfying the following requirements: 

(1) ~(x) = 1 when p(x, q) <_ r and qa(x) = 0 when p(x, q) > R; 

(2) there exists a constant c > 0 such that 

C 
(1.16) IId~l] (x) < R - r for every vertex x E X. 

Observe that  CR,o(q) = BR(q). 

Since G has uniformly bounded vertex degree, it is possible to guarantee the 

existence of such functions. To give an example, 

1 when p(x,q) <_ r 

(1.17) ~(x) ---- R-p(~,q) R-~ r <_ p(x, q) < R 

0 when p(x, q) >_ R 
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is a radial, with respect to q, piecewise linear, cut-off function for CR,r(q). 

We note that this choice of ~ satisfies 

(i.18) ~v(x) _< 2~(y) for every x ~ y E BR-t(q) .  

Green's formula yields the following version of the divergence theorem: 

PROPOSITION 1.2: 

CR,,-(q). Then 

(1.19) 

Let u: X ~ R and let V~ be a cut-off function for the region 

m(x) d i v @ ,  du)(x) = O. 
BR(q) 

From Green's formula and the properties o f~  we have Proof: 

1 

Bn(q) Bn(q) BR(q) 
1 

Ba(q) zeBa(q) y:~f(q) 

1 
+ 

P(Z'q)=Rp(y Yq~JR+l 

= I 

Remark: The radius r plays no r61e. 

Throughout the paper we shall assume that G is infinite, connected, with 

uniformly bounded vertex degree. Furthermore, c will always denote a positive 

absolute constant which may change from line to line, unless otherwise specified. 

2. Non-exis tence  of  s functions. The  case p > 2 

The main result of this section shows that no non-negative subharmonlc function 

belongs to s for p > 2. (For a more precise statement, see Theorem A below.) 

As remarked in the Introduction, we are able to obtain conclusion (2.1) only for 

p > 2. We conjecture that this apparently technical assumption, rather than the 

most natural 1 < p < oo, is due to the intimate nature of the discrete Laplacian. 

More precisely, we believe it concerns the fact that, in the discrete case, the 

Laplacian involves only differences of the first order. A weaker, nevertheless 
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interesting conclusion in case 1 < p < 2, is contained in Theorem C of section 3. 

As an immediate consequence of Theorem A we obtain a sufficient condition to 

guarantee recurrence of a graph. 

We should mention that Karp [K] proves a fairly general continuous version of 

Theorem A on a complete, non-compact, Riemannian manifold. It will become 

apparent to the reader that our argument is based on the same lines of reasoning. 

However, the discrete case reveals some extra difficulties which make the present 

proof a not at all obvious generalization of Karp's. (See also the special case, in 

the discrete setting, treated by Dodziuk and Karp [D-K].) 

THEOREM A: Let u: X --* [0, +oo) be a non-constant, subharmonic function. 

Then, for any fixed vertex q and p >_ 2, 

(2.1) lim 1 up(x)  = + ~ .  
R--.+oo 

sn(q) 

The proof of Theorem A (as well as that of Theorem C of section 3) employs 

estimates of the following type: 

LEMMA 2.1: Let u,g: X --* R and ~o be a cut-offfunction for the region CR,r(q). 

Then 

(i) II(~g)*dull 2 (x) <_ ~ ~2(x)g2(x)Ildull = (x); 
~R(q) Ba(q) 

(ii) 

Proof." 

IIg* d~ll = (x) < ~ g=(x)IId~oll 2 (x). 
Bn(q) Sn(q) 

(i) We compute 

4 II(~g)*d~,ll 2 (x) = ~ ~ [ ( ~ g ) ( x ) +  (~g)(y)12[d~,(~,y)]= 
Bn(q) xEBR(q) y,~x 

< 2 E E [(~~ T (~og)2(y)][du(x,y)] 2 
xE Bn(q) y.~z 

= 2 E (~~ (x) + 2 E E (~~ 
Bn(q) zeBn(q)  ~]~z 

Next, we observe that, since ~o is null outside Bn(q), the sum in the last term of 

the inequality can be performed on the symmetric set 

{x, y e Bn(q): x ~ y}. 
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Thus we can exchange x and y, and then dominate with 

~(<ng)~(y)[du(x,y)? 
yE Bn(q) x~y 

obtaining (i). 

(ii) Since <n is a cut-off function for CR,r(q) we have 

(2.2) lid<nil (Y) = 0 on SR+l(q). 

We compute 

411g.d~ll2(x)_< 2 ~ ~-~[g2(xl+g2(y)l[d<n(x, yl]2 
Bn(q) xeBn(q) Y ~z  

=2 ~ g2(x)lld<nll2(x)+ 2 ~_, ~g2(y)[d<n(x,y)}2 
BR(q) xEBR(q) y~z  

< 2 ~ g2(x) lld<nll 2(x)+2 ~ g2(y)E[d<n(z,y)]2 
zEBn(q) yEBR+I(q) y~x 

< 2 ~ g2(x)lid<nil 2 (x) + 2 ~ g2(y) lid<nil ">. (y) 
xeBn(q) yEBR+I (q) 

= 4 ~ 92(x)lid<nil 2 (x) 
BR(q) 

where in the last step we have used (2.2). | 

LEMMA 2.2: Let u: X ~ [0, +co) be a subharmonic function and p _> 2. Then 

(2.3) m(x)AuP(x) > uP-2(x) Ildull 2 (x) 

for each x E X .  

Proof." We fix x E X. If u(x) = 0 and p = 2 formula (2.3) is trivial, while for 

p > 2 the condition u _> 0 implies AuP >__ 0 so that (2.3) holds. Otherwise, (2.3) 

amounts to showing the validity of the inequality 

z > 

under the assumption 

1 ~ u(~) > ~(x). (2.5) re(x) - 
y~X 
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This is indeed the case since 

_> I, 

Oil 
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m = m(x), p > 2 

lim inf 1 R - . + ~  ~ ~ < + ~ "  
Bs(q) 

This means that  we can find a sequence {Rk} such that 

(2.7) R~ >_ 2Rk-1 

and B E (0, +cr so that  

(2.s) 1 ~ u P < B  
R2 BR~ (q) for each k. 

Indeed, by contradiction assume that  

m 

{ E z j > _ m ,  z j > 0 ,  j = l , . . . , m } .  
j=l 

This follows from the inequality zn - 1 E p(z - 1) + ~(z - 1) 2 valid for z E 0 and 

p_>2. | 

Remark: Note that  (2.3) is false when 1 < p < 2. 

Proof (o[Theorem A): We fix a vertex q in G and p > 2. Next, we observe that  

the result follows at once from the validity of the following claim: let R >_ r + 2 

and ~o be a linear, radial, cut-off function for the region Cn,r(q) as in (1.17), then 

(2.6) E ~2(x)un-2(x)lldull2 (x) < (R -r) 2 un(x) 
BR(q) (q) 

E ~o2(x)un-2(x)lldul[ 2 (x)+ 
CR,r-I (q) 

+ (R r) - - - - - ~  ~ y~ u'-'(x)[u(~)-u(x)l' . 
xESR y ~ z  
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For each fixed k we define 

1 ~ up , 
(2.9) Ak = R--~k 

Bn~ (q) 

(2.10) rk = Rk-1 + 2, 

1 
(2.11) Zk 

=~E S.~,. Y " "  
yESR~,-I 

u,-~C~)[~(z) - u(y)] 2, 

and, for the radial, linear cut-off function ~ok associated to the region Cn~,r, (q) 
as in (1.17), we set 

(2.12) 
B~, (q) 

Then (2.6) can be rewritten as 

~ ( x ) u p - ~ ( x )  ltdult 2 (~). 

Q~ < C ~R,~, ~ ~(x)un-~Cz) Ildull '~ (x) + Bk 
nk,~-l(q) 

SO that, with the aid of (2.7), 

(2.13) Q~<_cAk( c., E,~, _, (q) 'P~(x)un-2(x)"du"2(x)+13k} " 

On the other hand the choice of rk in (2.10), together with ~o~-1 _< ~k, gives 

(2.14) ~., ~o~(x)un-2(x) Ildull 2 (x) <_ Qk - Qk-1. 

Putting together (2.13) and (2.14) we finally obtain 

(2.1s) Q~ < cB(q~ - qk-1 + ~) .  

Since u is non-constant, certainly Qk > 0 for k >_ k0, and Qk T Q e (0, +co]. We 

want to show that (2.15) implies Q = 0, thus obtaining a contradiction. Towards 

this end we observe that, for any R E N, 

(2.16) E E un-2(x)[u(x)-u(y)l'<-M Z unCx). 
=ESR Y"=  SAuSA-I 

yESR-1 
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To establish (2.16) we make use of u _> 0, and of the elementary inequality 

aP-2(a _ b) 2 _< (a p + b p) 

valid for a, b > 0 and p > 2. 

Thus (2.16), (2.7) and (2.8) imply 

(2.17) ~k <_ cAk <_ cB. 

Substituting (2.17) in (2.15) and recalling that Qk > 0 for k large, we obtain 

(2.18) Qk <_ cB ( l  + -~k ) �9 

This proves that Q is finite; in particular 

Qk - Qk-1 ~ 0 as k ~ +cr (2.19) 

Moreover, 

Q <CD2Q--~ - - - - * 0  a s k ~ + o r  (2.20) ~k < C(R k _ rk)2 _ /fk-1 

now, (2.15), (2.19) and (2.20)imply 

Q=o 

which contradicts our assumptions. 

It remains to prove (2.6). We divide the argument in two steps. 

STEP 1: Let R, r and ~ be as in (2.6). From the divergence theorem 

m(x) div(~ 2 * duV)(x) = O. 
BR(q) 

Hence (1.14) implies 

1 (2.21) 
BR(q) B~(q) 

Applying (2.3) of Lemma 2.2 we then have 

(2.22) y~ ~02(x)uP-2(x)Ildull 2 (x) < -c ~ (d~o2.duP)(x). 
BR(q) B~(q) 

11 
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We square (2.22), apply the Cauchy-Schwartz inequality, Lemma 2.1 (ii), and 

the properties of V to obtain the following chain of inequalities: 

(2.23) 

Ca,.(q) 

< c v(x) + v(~)][~ ' (x) + u , (~)1. 
"xECr., (q) y~x 

�9 I , , (x) - ~(y) l  [~,, /2(~) + ~,,,/2(~)1 Iv (x )  - v ( y ) l }  ~ 

2 * du)ll (~)I1( '''~*''~)11 (~)} 
_~ c,,, *d,~)ll (~)} 

--< (R -- r) 2 R(q)  ~" ~'xECR.r(q) 

STEP 2: We estimate the last term on the RHS of (2.23) from above. We 

compute 

(2.24) 

I I V * ( u ~  *du) 2(x) 

u ~ ( y ) ] 2  [u(x) u(y)] 2 =c ~ ~[v(x)+v(y)]' [u (x)+ 
xECs,~(q) y.~x 

< c ~ Z[v~(x )  + v~(y)] [u,- ' (x)  + u,- ' (y)]  [~(~1 - ~(yll ~ 
x6Ca,~(q) y~x 

< c { A + t 3 + C + ~ }  



Vol. 99, 1 9 9 7  SUBHARMONIC FUNCTIONS ON GRAPHS 13 

with 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

=~.CR.,(q) 

zECn,,.(q) Y~= 

=6Cn,.(q) 

=~_C~,r(q) 

To take care of .4 observe that 

(2.29) -4 < ~ ~=(x)uP-=(x) Ildull 2 (x) 
Ca..- ~ (q) 

and similarly 

(2.30) B <_ ~ ~2(x)up-=(x) Ildull = (x). 
C a . . -  ~ (q) 

As for C we observe that  choice (1.17) of qo(x) implies (1.18) to the effect that 

we can dominate ~2(x) with 4~2(y) whenever x, y E BR-I(q) and y ,,, x. Hence 

we obtain 

(2.31) C < c y~ ~2(x)uP-2(x)lldull 2(x)  
CR, . -  ~ (q) 

+ E Z ~(~)~'-~(u)[~(~)- ~(y)l 2. 
zESn-x(q) u ~z 

yESa(q) 

For z E Sa - l (q ) ,  

and so 

~,~(z) _ - -  
(R - r) 2 

(2.32) C ~ c ~ ~=(m)uP-=(m) Ildull 2 (x) 
CR,.-a (q) 

c 
+ (R- r)------~ Z ~ ~'-~(yl[~(x)- u(u)] 2 

zESa-l(q) y~z  
yeSa(q) 
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On the other hand, the same procedure yields 

(2.33) 7) < c ~ ~2(x)u'-2(x) Ildull 2 (x) 
C~,~_~(q) 

c 

+ (R- r)-----~ ~ Z ~-~(x)[~(~) - ~(y)]~. 
xESn(q) y,~z 

y~Sn- ~ (q) 

From (2.24), (2.29), (2.30), (2.32) and (2.33) we finally have 

(2.34) Z qo, (u ~ , du) 2 (x) 
*~Ca,.(q) 

< c ~ ~2(x)up-2(x) Ildull 2(x) 
c~,._l(q) 

+ (R-~ r)--------~ Z ~ ~'-2(x)[u( x) -  u(~)] 2 

Putting together Steps 1 and 2 we derive (2.6). | 

A simple application of Jensen's inequality and Theorem A gives 

COROLLARY B: Suppose that/'or some (hence any) q E X the graph G satisfies 

IBR(q)I 
(2.35) liminf R---T-- < +co. 

R~-t-c~ 

Then the graph is recurrent. 

+ ~  1 Remark: We observe that (2.35) implies that ~-'~R=I - +co. Thus the ISa(q)l 
conclusion of Corollary B also follows directly from the Nash-Williams criterion 

[N-W]. 

Proof." We need to show that any non-positive subharmonic function u: X ~ R 

is constant. Towards this aim we define 

v = expu. 

Obviously, 0 < v _< 1 and, by Jensen's inequality, 

Av_>0. 

Let {Rj} T +c~ be a sequence satisfying 

IBRj(q)I -~ B < +co Ry as j ~ +co. 
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For any fixed p _> 2 we then have 

1 
lim --~ ~ vP(x)< l ira IBa~(qll 

j~+oo  R j  eni  (q) -- j--+oo R 2 

Theorem A implies that v, and hence u, is constant. | 

SUBHARMONIC FUNCTIONS ON GRAPHS 

- -  - B < +oo. 

15 

3. Non-existence  of  eP-subharmonic functions. The case 1 < p < 2 

The aim of this section is to follow the path previously undertaken and prove 

Theorem C concerning the case 1 < p < 2. We note that conclusion (2.1) of 

Theorem A is now replaced by the weaker (3.1). However, this latter is enough 

to guarantee the validity of the natural generalization of Corollary B stated in 

Corollary D below. 

We also point out that the technical device described in Lemma 3.2, which 

allows us to restrict our attention to the class of positive subharmonic functions, 

will also be used in the subsequent section 4. 

THEOREM C: Let u: X ~ [0,+oo) be a non-constant, subharmonic function. 

Then, for any fixed vertex q and any I < p < 2, 

(3.1) lim inf 1 ~p(~) > o. 
R---+oo BR(q) 

In the proof of Theorem C we shall make use of 

LEMMA 3.1: Let u: X ~ [0,+oo) be subharmonic and suppose there exist 

p E  (1,2) and x E X such that 

(3.2) AuP/2(x) < O. 

(3.3) 

Proo~ 

Then there exists a constant cp E ( -  �89 O) (depending only on p) such that 

,~(x)upl2(z)/~up/~(z) > cp duW2 2 (~). 

Obviously we have, from (3.2.), u(x) > 0; (3.3) is equivalent to show that 

~/%) ~ b ~ / % )  - ~/'(y)] < Ic~,l ~ [ ~ / % )  - ~/~(~)]'. 
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Proceeding as in Lemma 2.2, since G has uniformly bounded vertex degree, it is 

enough to prove that, for p E (1, 2) fixed, the supremum of the functions 

Oil 

m = re(x) ra 1 2' Ej=,(  - zj) 

zj < m, z~/p > m, zj > O, j = 1 . . . . .  m 
- j = l  

is strictly smaller than �89 Towards this aim we use the inequality z ~ < az  + 1 - a, 

valid for 0 < a < 1, z > 0. We multiply by z, and get 

z2_>lzl+. 1 - a  
c~ o~ 

2 in the above. II Next, choose 1 + o = 2/p and substitute for zj 

Proof (of Theorem C): We fix q E X, p E (1,2) and take R sufficiently large so 

that  

(3.4) du p/2 ~ 0 on BR(q) 

(this is possible since u is non-constant). Let r be a cut-off function for the 

region BR(q) = Ca,0(q). The divergence theorem and (1.14) give 

1 
(3.5) Z m(x)~2(x)Aur ' (x)= -'2 Z (d~2"duP)(x)" 

BR(q) Ba(q) 

On the other hand, 

1 duP/2 2 Au p = div(du p) = div(2u p/2 , du p12) = 2uP/~AuP/2 + - -  
m 

and therefore (3.5) gives 

(3.6) Z ~2(x) dup/2 2 (x) + 2 Z m(x)~2Cx)u~'/2Cx)Aup/2(x) 
Ba(q) Ba(q) 

1 
< Z 

BR(q) 

Next, we observe that, with a reasoning similar to that used in (2.23) of Step 1 

in Theorem A, we have 

B~(q) Ba(q) 
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Hence, having arbitrarily fixed v > 0, (3.6) and (3.7) yield 
2 

(3.8) ~ ~(~) alum (x) + ~ ~ ~(~)~2(~)u"/~(~),~um(~) 
Bn(q) BR(q) 

<- ~ ("  up/2*d~ 2 ( x ) + I v  ~*dup/2 2(x)) " 

Ba(q) 

We now use Lemma 2.1 (i), (ii) to estimate the RHS of (3.8) from above; thus 

BR(q) aR(q) 

< ~- ~ uP(x)IId~ll 2 (x) 
On(q) 

where AR(q) = {x E BR(q): Aup/2(x) < 0}. 

Using the properties of the cut-off function ~ and Lemma 3.1, from (3.9) we 

obtain 

BR(q) B~(q) 

with Ic~l < 1/2. We may thus choose ~" > 0 such that 

(3.11) 1 - 1- - 2 I~,1 > 0. 
T 

Now (3.4), together with (3.10) and (3.11), imply the validity of (3.1). | 

Remark: In (3.11) above we have used in an essential way I%1 < 1/2. According 

to Lemma 3.1, this follows from the assumption p > 1. Indeed, for p = 1, (3.4) 

holds with cl = -1 /2 .  Nevertheless, it is reasonable to wonder about the validity 

of Theorem C in this latter case. Unfortunately we have not been able to provide 

either a proof or a counterexample. However, we recall that, in the continuous 

case, there exist complete manifolds with non-constant subharmonic functions of 

class L' (see [L-S]). 

COROLLARY D: Let 0 < ~ < 1 and assume that, for some (hence any) vertex q, 

IBR(q)I 
(3.12) liminf R2_6 = 0. R~+oo 

Let u: X -~ R be subharmonic and suppose that for some constant A, B > O, 

O<_k < ,5, 

(3.13) u(x) < Apk(x,q) + B. 

Then u is constant. 
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Remark: We wish to stress that nothing is required on the behaviour of u from 

below. 

The following device allows us to reduce the proof of Corollary D to the case 

u > 0 .  

LEMMA 3.2: Let u: X ~ R be subharmonic. Then for each a E R there exist 

positive constants Aa, Ba and a subharmonic function v = v~: X ~ (0, +oo) such 

that 

(3.14) v(x) _< A~ Max {u(x), a} + B~. 

Furthermore, v is constant if  and only ff  u is constant. 

Proo~ 

(3.15) 

Next, we set 

We fix a E R and let 

e t 

x~(t) = (a - t)e (a-i) 

0 

if t_< a -  1, 

i f a - l  <t<_a,  

i f t  > a .  

~(x)=v.(~)=g(u(x)). 

Thus, from (3.17)(i) v is positive. To show that v is subharmonic we note that  

by Taylor's formula, for each x E X and y ,,, x, there exists a value ~/=,~ between 

u(x) and u(y) such that  

m(x)~vCx)  = ~ [ v ( y )  - ~(x)] 
y,~x 

1 tl 

1 ~ g,,(,=,,,)[~,(~) _ ,,(xl]~ = m(xlg ' (u(=l l~u(x)  + 
y~,Z 

(3.18) 

Obviously g satisfies 

[ (i) g ( t ) > 0 ,  (ii) g ' ( t ) > 0 o n ~ ;  
(3.17) 

(iii) g"(t) > 0 on (-oo, a), g"(t) = xa(t) = 0 on [a, +oo). 

We define on X 

(3.16) g(t) = Xa(r)drds. 
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and the desired property is then a consequence of (3.17) (ii) (iii) and Au _> 0. 

Finally (3.16) implies 

(3.19) g(t) < At + B 

for some A = Aa, B = Ba so that (3.14) follows at once. The last assertion of 

the lemma is due to (3.17) (ii). | 

Proof  (of Corollary D): We fix a E R and let v(x) = va(x) be the positive, 

subharmonic function defined in Lemma 3.2. Putting together (3.13) and (3.14) 

we have 

(3.20) v(x) <_ AIpk(x,q) + B t 

for some constants A t, B'  > 0. Next, we observe that for any p > 1, 

1 IBR(q)I 1 

BR(q) BR(q) 

R 
c c ~-'~ikp <- ISs(q)l. 

Ba(q) 5=1 

Choosing p = 6/k  > 1, we obtain 

R IBR(q) ] 
1 X--'vp(x)<_ c V'~R ISs(q)l< c ~V" 

R-- ~ ~ ~-~ z_ ,J  6 ~ ISj(q)l < _ c R2_6 . 
BR(q) 5=1 j = l  

From (3.12) it therefore follows that 

lim inf 1 _  = 0 .  
R~+oo  R z 

Ba(q) 

Now, Theorem C, in case p < 2, or Theorem A otherwise, imply that v, and 

hence u, is constant. | 

4. Subharmonic functions of  logarithmic g r o w t h  

In Corollaries B and D we have proven constancy of subharmonic functions which 

are either bounded above or of sufficientely small polynomial growth, provided, 

respectively, that 

InR(q)[ 
(4.1) (i) liminfa_.+oo R ------T-- < +oo; or (ii) n-~+ooliminf IBR(q)IR 2-6 = 0 
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for some 5 > 0. 

It  is interesting to analyse the case when the growth of u ranges between the 

behaviours above. Theorem E provides a satisfactory answer when u is at most 

of logarithmic growth. The proof we shall present below relies, in an essential 

way, on Lemma 4.1, which may be interesting on its own. We mention that  this 

latter has been inspired by some work of Li and Tam, [L-T], in the continuous 

c a s e .  

THEOREM E: Assume that, for some vertex q E X,  

[BR(q)I 
(4.2) lim R2 - 0. 

R ~ + o o  

Let u: X ~ R be subharmonic and suppose that 

(4.3) u(x) < Alogp(x,q) + B 

for some positive constants A, B. Then u is constant. 

The proof of Theorem E is based on the next result. First of all we introduce 

some notations. Given v: X -* R, q E X and k E N, we set 

(4.4) sk(v) = Max v(x) ,  ik(v) = Min v(x).  
S~ (q) s~ (q) 

We are now ready to state 

LEMMA 4.1: Let v: X ~ [0,+co) be such that Av >_ 0 and fix q E X.  Then, 

there exists a positive constant c = c(G), depending only on the graph G, such 

that for each R > r + 3 >_ 4: 

[ fR- - i~(v )]2(  1 ) - -  Mi~(v) R (4 .5 )  < = f R  " " 

=ES.+I (q) yeS.(q) 
y ,~x  

provided fir > Mi~(v) with M as in (1.2), and fin _> sa(v). 

Let us assume, for the moment,  the validity of Lemma 4.1 and show how to 

deduce Theorem E from it. 

Proof (of Theorem 17,): Fix a vertex Xo E X and choose 

(4.6) a > Max {u(xo),u(y)}. 
~ Z O  
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Let g(t) = ga(t) be as in (3.16) of Lemma 3.2, and define 

(4.7) v(x) = g(u(x)). 

Then v is positive, subharmonic and, because of (4.3), 

(4.8) v(x) <_ A1 logp(x,q) + B1 

for some positive constants A1, B1. Now we fix r > 1. We can assume to have 

chosen Ro sufficiently large so that 

(4.9) (i)A1 log Ro + B1 > Mid(v), (ii)Ro > r + 3. 

We now put R _> Ro. By Green's formula, subharmonicity of v, (4.8), (4.9) (i), 

(ii) and Lemma 4.1 we obtain 

(4.10) 0 <_ E m(y)Av(y) = E ~ [v(x)-v(y)]  
B,.(q) yESr(q) xESr+l (q) 

x,~y 

xESr+x(q) yES.(q) yr,~x 

[A1 log R + B1] 2 1 log R 
- -  - -  C l  ~ - - ~ R  < erA1 logR + B1 Mid(v) n < 

- -  Er-I-1 ~ Z.-,r-I-1 

where the positive constant cl is independent of R, provided we have chosen R0 

sufficiently large. 

We now claim that 

log R 
(4.11) lim n ~ =0" 

n-~+oo ~ r + l  In~(q)l 

Indeed, we set bj = j~ IB~(q)[ and observe that (4.2) imply 

(4.12) jbj ~ +c~ as j -* +oo. 

Thus, having fixed any positive constant A there exists Jo = jo(A) such that 

(4.13) jbj >_ A for each j _> J0. 
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Let R > jo. We compute 

R ~ R 1 >  A l o g R _ A ~ - ~ I "  

j = r + l  j = r + l  j o + l  j = l  3 

Therefore 

R A E j0 1 
(4.14) ~j=~+lbJ  > -- - A j=l ~ R > jo 

log R - 2 log R ' 

showing the validity of (4.11). Putting together (4.10) and (4.11) we conclude 

that  v is harmonic on BR(q) and hence on X, since the choice of r was arbitrary. 

Having proved harmonicity of v, Taylor's formula gives 

(4.15) 0 = m ( x o ) a v ( x o )  

1 
= m(xo)g'(u(xo))AU(Xo) + -~ E g"(~l=o,u)[u(x~ - u(y)]2 

y N x o  

for appropriate values ~?=o,y between U(Xo) and u(y). On the other hand, choice 

(4.6) of a implies Yxo,u < a for each y ~ xo. Therefore, according to (3.17) (iii), 

(4.16) g'O?~o,u) > 0 for each y ~ Xo. 

Since g'(u(xo)) > 0 and Au(xo) > 0, (4.15) and (4.16) force U(Xo) = u(y) for 

each y ,,~ xo. Hence u is locally constant, and therefore constant because the 

graph is connected. | 

Proof (ofLemma 4.1): To simplify notations we set 

o 
D = CR,~(q) and D ---- C R - l , r + l ( q ) .  

Let f :  D --, R be the solution of the problem 

(4.17) 

o 
A/(x)  = 0 on D, 

/ ( z )  = v(x)  on S,(q) ,  

f (x)  = ~R on Sit(q). 

By the maximum principle v _< f on D, and hence 

(4.18) v(y) - v(x) ~_ f(y) - f (x)  for x E Sr+l(q), y E St(q). 
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Similarly, let h: D --* R be the solution of 

(4.19) 

o 
Ah(x) = 0 on D, 

h(x) = i~(v) on S~(q), 

h(x) = fir on SR(q). 

Again, the maximum principle implies 

(4.20) h(y) - h(x) >_ f (y)  - f (x )  

Define 

and 

for x �9 ,-,qR-1 (q), 

AR = {(x,y): x �9 Sn- l (q ) , y  �9 Sn(q),v " x} 

12,. = {(x,y):  x �9 Sr+l(q),y �9 Sr(q),y ,~ x}. 

An application of Green's formula gives 

(4.21) 0 = Z df(x,y) + Z df(x,y) 
A n  I2,. 

so that (4.21), (4.20) and (4.19) imply 

(4.22) 

and 

- ~ dv(=,y) <_ - ~ dS(=,V) 

0 = Z dh(x,y)+ Z dh(x,y), 
A R f t .  

AR AR n .  

Green's formula and (4.19) to compute 

(4.23) 

Next, we compare - ~-'~n. dh(x, y) with ~-']~b Ildhll2 (x). Towards this aim we use 

fldhll ~ (=) = ~ Z[h(~) - h(v)] ~ 
o y~,Z 

zED 

= ~ [h(~) - h(vll ~ + ~ ~ [h(~)- h(v)] ~ 
, _".. yE$.(q)OSa(q) 

z,yED zt~ y.~z z.~y 

=2 Z Z h(x)[h(y) - h(x)l 
=~ b ~eS.(q)uS,(q) 

c y.~z 

+ ~ ~ [h(,)- h(v)]' 
*.. ~s.(q)uSa(q). 

X~LI  y~ 'Z  

= ~ ~ [h(~) + h(y)l[h(V)- h(~)]. 
- o yESe(q)USR(q) 

xt~ li~z 

v �9 SR(q). 
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Since h is constant on SR(q) we have 

(4.24) dh(x,y) >_ 0 if x E SR-t(q),  y E SR(q), and y ,,~ x; 

similarly, 

(4.25) dh(x,y) < 0 if x E S~+t(q), y E S~(q), and y ,,, x. 

Putt ing together (4.19) and (4.22)-(4.25) we obtain 

(4.26) 

Ildhll ~ (x) = ~ ~ [h(x) + ~Rldh(x,y) 
~) xESR-1 (q) yeSR(q) 

y,~.,z 

+ ~ ~ [h(x) +ir(vlldh(~,y) 
xeSr+l (q) yeSr(q) 

y ~ X  

> [Z~ + iR-l(h)] ~ eh(x, ~1 + lit(v) + s~+l(h)] ~ dh(x, ~1 
AR ~,- 

_> [~R + iR_~(h) - i~(~) - s~+~(h)] ~ [ - eh (x ,  y)l. 

The maximum principle and ~R >_ MG(v) give 

~R >_ sr+l(h) 

and from (4.26) we finally obtain 

(4.27) Ildhll 2 (x) >_ [iR-l(h) - G(v)] E[-dh(x, y)]. 

o 

On the other hand, since h is non-negative and harmonic in D, 

1 r 
~(~) -  ~ x )  ~ h(~) __ y , ' ~x  

for each x E SR-l(q).  

Hence, (4.27), (4.25) and (4.22) yield 

(4.28) - ~ dv(~, y) _< 
M 

3R - MG(v) ~ IIdhll2 (x). 
D 
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Next, we estimate the energy of h on /~  from above with the aid of an auxiliary 

function. Thus we define the radial functions 

p(z,q) 

(4.29 / a ( x )  = a ( p ( x , q ) )  = Z J 
3 = r  

m 

and 

(4.30) ~o(x) = a a ( x )  + b on D 

with 

/3a - i~(v) and b = i r ( v ) a ( R )  - ~ n a ( r )  
(4.31) a - a ( n )  - a(r)  a ( R )  - a ( r )  

The above choice of a and b implies 

: ( x )  = h (x )  on S t (q )  (J Sn (q ) .  

Since harmonic functions minimize energy, (4.28) gives 

M 
(4.32) - ~ dv(x,y) < ~ IId~ll ~ (x). 

n.  - /3n - M i d ( v )  D 

To compute the energy of ~0 let us set 

out(x)  = t{~ ~ x: p(y, q) = p(x, q ) +  1}1 and 

in(x) = I{Y ~ x: p(y,q) = p ( x , q )  - 1}l. 

Obviously 

(4.33) out(x),in(x) _< M. 

Furthermore, (1.2) implies M -1 ISj+,(q)l <_ ISj(a)l so that 

(4.34) tBj+l(q) l  < (1 + M)IBj(q) ] .  
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Hence, (4.33), (4.34), (4.30) and (4.29) yield 

(4.35) 

R - 1  

Ild~ll 2 (x) - ~ ~ IId~ll = (x) 
o j = r + l  xESj  (q) 
D 

R - 1  R - 1  

= E E E E 
j = r + l  xESj(q)  y~x  j=rq-1 xeSj (q) y~x  

R-1 { ( j + l ) 2  j2 } 
=a ~ ~ ~ ~ +i'(x)lBj(q)l: 

j=r-t-1 xESj(q)  

n - l {  j2 } R j2 
< a2M E [Sj(q)[ (J + 1)2 [Sj(q)[ 

j=r+l [Bj+l(q)[ 2 + [B~(q)[ -------~ < 8a2M ~ j = r + l  [Bj(q)l 2 

= 8a2M ~ j2(JBj(q)l- IBj-l(q)l) 
j = r + l  IBj(q)l 2 

R 
<_8a2M E j2{ 1 1 } 

j=~+l IBj-l(q)J [Bj(q)l 

{ } (r + 1) 2 2j + 1 8a2M 
[B~ (q)----~ + E 

< 
- IBj(q)l j = r + l  

< 8a2M { (r.4_ X)2(M + I) R-1 } R 
[B~+l(q)[ + 3 E J J I B j - ( q ) l  < cra2 ~ 

- - IB/(q)l j = r + l  j = r + l  

where the constant c depends only on the geometric structure of the graph G. 
Putting together (4.32), (4.31) and (4.35) we deduce 

R 

_Edv(x,y)<cra2 E J n~ ~+1 JB~'(q)l [j3R - Mi,.(v)] -1 

[~R - i~(v)] 2 1 
~-- c r  i3a Mi~.(v) R 

-- E r + i ~  

that is, (4.5). | 
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